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1. Abstract 

Spatial association network is quite important for boost Forest Carbon Sink Efficiency (FCSE). In facing carbon 

peak and carbon neutrality target forest carbon sink plays a very important role. By measuring FCSE of Chinese 

provinces using the Super-SBM-DEA model and Social Network Analysis (SNA), the network characteristics 

and clustering characteristics were analysized. By combining the QAP model and the panel data regression 

model, the driving mechanism of the FCSE spatial association network and the contribution of the network to 

FCSE are revealed. The results have showed that the spatial correlation of FCSE in China has break through the 

limitation of geographical distance and have showed a prominent complex network characteristics and apparent 

core-periphery structure. Besides, the spatial clustering characteristics of FCSE in China is obvious, and the 

interaction relationships of elements mostly occur between different plates. In addition, geographic proximity 

and differences in water resources are the important natural factors which influencing the formation of the FCSE 

spatial association network. And the differences in economic level, forestry scale, and technology level are 

important socio-economic factors influencing the formation of the FCSE spatial association network. Thus, the 

increase of degree centrality, closeness centrality, and betweenness centrality are all contribute to FCSE 

significantly. Our study is a valuable attempt to apply SNA to FCSE research, which tells the importance of 

resource connections and spatial association network relations and this can refer to valuable suggestions for the 

government to develop appropriate carbon neutrality strategies at the carbon sink side. 

 

2. Keywords: Carbon neutrality; Forest carbon sink efficiency; Spatial association network; Drive mechanism 

 

3. Introduction 

Excess carbon emissions from human activities have become an important challenge which threaten human 

survival and sustainable development (Karl and Trenberth, 2003; Galeotti et al., 2006; IPCC, 2018; Liu and Su, 

2021). Since 2006, China has been the world's largest carbon emitter (Bai et al., 2020; Shen et al., 2021), which 

accounting for about 28% of global carbon emissions in 2019 (BP, 2020), and the successful achieving carbon 
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reduction targets is not only a matter of its own sustainable development but also a matter of global 

environmental issues (Niu et al., 2020). Thus, China’s carbon reduction progress and action plans have become 

a common concern topic in the international community (Li et al., 2022). 

 

There are two main approaches to reducing the concentration of CO2 in the air. The first one is to reduce fossil 

energy consumption by developing new energy technologies from the carbon source side (Ha et al., 2021). And 

the second is from the carbon sink side by developing carbon sequestration technologies to absorb and fixation 

CO2 in the air (Zhao et al., 2019). Since China is the world’s largest consumer of fossil energy, and the cost of 

shifting China's economic growth away from dependence on fossil fuels in the short term is enormous 

(Mallapaty, 2020), that it is necessary to focus on the carbon reduction role of carbon sink side (Li et al., 2023). 

The forest ecosystem is an essential system for achieving the goal of harmonious ecological and economic 

development and plays a vital role in CO2 absorption and fixation. (Lin et al., 2019; Austin et al., 2020; Ke et 

al., 2023). According to relevant studies, the global forest ecosystem store about 80% of above-ground carbon 

stocks (Wang et al., 2022). Emphasizing the role of Forest Carbon Sink (FCS) in balancing the relationship 

between economic development, carbon reduction, and environmental protection is an essential step toward 

carbon neutrality in China (Zhao et al., 2023; He et al., 2023; Ge et al., 2023). 

 

Earlier literature usually assessed FCS indicators in China based on national forest inventory datasets and 

remote sensing estimation methods (Ma et al., 2011; Zhou et al., 2013; Zhao et al., 2016; Zhang et al., 2016), 

and have found that there are significant spatial differences in the distribution of FCS in China (Liu et al., 2012). 

Consolidating and enhancing the carbon sink capacity of ecosystems became one of the ten action plans to reach 

the carbon peak in China after the "dual carbon" target was proposed (Liu et al., 2023). Analyzing the 

influencing factors of China's FCS from a socio-economic perspective and proposing reasonable FCS 

enhancement strategies have gradually become an important research direction in the literature at this stage 

(Cheng et al., 2021; Xu et al., 2022; Yin et al., 2022; He et al., 2023; Wu et al., 2023). Although the FCS 

indicator reflects the great value of forest ecosystems in carbon sequestration and emission reduction, it reflects 

more natural attributes. In contrast, forest carbon sink efficiency (FCSE) considers economic and environmental 

outputs in the analytical framework, reflecting both natural and socio-economic attributes. It is more scientific 

and reasonable to use FCSE as an evaluation criterion for forest carbon sink levels (Wei and Shen, 2022; Zhu et 

al., 2022). 

 

Some recent literatures have referred to the FCSE in China from measurement efficiency and analysize 

influencing factors. About the efficiency measurement methods, the existing literature usually uses data 

envelopment analysis (DEA) and its various variant models to measure FCSE in China (Lin and Ge, 2019; Zhu 

et al., 2022; Zhu et al., 2022). The input indicators they chose usually include forest area, number of forestry 

employees, and investment in forestry fixed assets, while the output indicators are usually gross forestry product 

and forest carbon sink (Wang et al., 2022; Shu et al., 2022). And the results have showed there is a quite 

difference between areas. For example, Wei and Shen (2022) measured the FCSE of Chinese provinces using 

the SBM-DEA model and found that FCSE was high in Zhejiang, Fujian, Tianjin, and Shanghai but lacked 

efficiency in most other provinces. About the influencing factors, environmental and human activity factors can 
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all influence FCSE. Wei and Shen (2022) used the PSR model to point out that the natural factors affecting 

FCSE in China include precipitation and temperature, and human activity factors include forestry development 

level and per capita GDP. Wang et al (2022) found that total annual precipitation and socio-economic 

development level significantly contribute to FCSE in China based on the Tobit model. Some scholars have also 

analyzed the spatial spillover effects of the factors influencing FCSE in China through spatial econometric 

models. For example, Zhu et al (2022) found that forest land use, pests, and diseases in surrounding areas have 

negative spatial spillover effects on local FCSE, while the opposite is true for temperature and precipitation. The 

above literature provides important measurement methods and analytical ideas for further related studies. 

 

With the continuous development of communication technology and transportation infrastructure in China in 

recent years (Liu et al., 2022), the spatial exchange of forestry production factors among regions is becoming 

more frequent. The cross-regional spillover characteristics of FSC are becoming obvious (Zhao et al., 2023), and 

FCSE is bound to show significant spatial correlation characteristics. Zhu et al (2022) pointed out a significant 

spatial correlation of FCSE at the county scale in Zhejiang, China, based on the Moran’I index. Zhang and Deng 

(2019) also found that the net carbon sink efficiency (NCSE) of Chinese cities is spatially correlated, in the 

context of taking vegetation carbon sinks into account in the analytical framework. 

 

To sum up, the literature has tell that consider the forest ecosystem’s natural and socio-economic attributes and 

study their climate regulation role has become a critical perspective. Much work has been done on its specific 

measurement, influence factor, and correlation analysis. And the above work is valuable for the depth 

understanding of FCSE in China. But still some questions related to contact network has not been answered 

related to the specific characteristics of the FCSE spatial association in China and the most critical factors 

driving the spatial association of FCSE in China. And also, the spatial association’s beneficial effect on the 

FCSE. And these questions can open up a new view for the network connection of resources and environment. 

 

The Social Network Analysis (SNA) has been widely used to study the spatial association network of carbon 

emissions or emission efficiency (Bai et al., 2020). Amount of literature have analyzed the network structure 

characteristics and driving mechanisms of carbon emissions or carbon emission efficiency in China based on 

this method (Li et al., 2017; Sun et al., 2020; Xu et al., 2022). And this have provide some referings for applying 

this method for FCSE study, and this can for sure contribute to enrich the previous work in the network 

connection sight. 

 

In this study the FCSE provinces level is measured in the year 2005, 2010, 2015, and 2020 by Super-SBM-DEA 

model. And then the SNA is used to reveal the overall network structure characteristics, individual network 

structure characteristics, and core-periphery structure characteristics of FCSE. Subsequently, the block model is 

used to analyze the spatial clustering pattern of FCSE. Finally, Quadratic Assignment Procedure (QAP) 

regression and panel data regression are used to analyze the driving mechanisms of spatially association 

networks of FCSE and the feedback of spatial network structure on FCSE. 
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The marginal contributions of this paper are summarized from the following ways: First, the network structure 

of FCSE in China has been revealed. Second, from the perspective of the sending and receiving effect way the 

spatial clustering pattern of Chinese provincial FCSE has been found. Third, the formation mechanism of the 

FCSE spatial association network in China has been investigated. Fourth, the feedback effect of the spatial 

association network structure in China has been examined by above all this have provided a new reference for 

better utilization of the network effect to improve FCSE in China. 

 

4. Materials and Methods 

4.1 Overview of the study area 

The study areas are China's 30 provincial administrative units (which have excluded Hong Kong, Macau, 

Taiwan, and Tibet due to data limitations). Figure 1 shows the provincial administrative units’ geographical 

location and land cover in 2020. From Figure 1, it can be found that China's forest resources have obvious 

differences in spatial distribution. Fujian, Jiangxi, Guangxi, Zhejiang, Hainan, Yunnan, and Guangdong 

provinces have higher forest cover. Provinces such as Xinjiang and Gansu have lower forest cover. In general, 

the southern provinces of China are relatively rich in forest resources and have greater potential for forest 

carbon fixation. 

 

Figure 1: Spatial distribution map of land use in China in 2020 (1km×1km raster). 

 

4.2 Calculation of forest carbon sink efficiency 

Measuring the current status of FCSE in China is a prerequisite for conducting continue analysis. We use 30 

provincial-level administrative units in China as decision making unit (DMU) to measure their FCSE values in 

2005, 2010, 2015, and 2020 using the Super-SBM-DEA model (Jiang et al., 2021; Chen and Liu, 2022). The 

calculation equations are shown in Eqs.1~2: 

 𝐹𝐶𝑆𝐸 = 𝑚𝑖𝑛

1

𝑚
∙∑

𝑥̅

𝑥𝑖𝑘

𝑚
𝑖=1

1

𝑠
∙∑

𝑦𝑙̅̅̅̅

𝑦𝑙
𝑑

𝑠
𝑙=1

 (1) 



ISSN: 1844-8135 (Print); 2065-2445 (Online) ANNALS OF FOREST RESEARCH 
Research Article www.afrjournals.org 

   

 𝑠. 𝑡. {

𝑥̅ ≥ ∑ 𝑥𝑖𝑗 ∙ 𝜆𝑗
𝑛
𝑗=1,𝑗≠𝑗0

;    𝑦̅ ≤ ∑ 𝑦𝑖𝑗 ∙ 𝜆𝑗
𝑛
𝑗=1,𝑗≠𝑗0

𝑦̅ ≤ 𝑦𝑖𝑗 ;

𝜆𝑗 ≥ 0;    𝑖 = 1,2, . . . , 𝑚;    𝑗 = 1,2, . . . , 𝑛;    𝑙 = 1,2, . . . , 𝑠

 (2) 

 

In the above equations, 𝑛 represent the number of DMU, which is 30. 𝑚 and 𝑠 represents the input and output 

variables, respectively. 𝑥 and 𝑦 represents the specific elements in the input and output matrices, respectively. 

𝐹𝐶𝑆𝐸 represent the forest carbon sink efficiency. The input variables in this paper include labor input, capital 

input, and land input. The labor input is expressed as the number of forestry employees in each province at the 

end of the year (Wang et al., 2022). The capital input is expressed as the forestry capital stock (Lin and Ge, 

2019) and is measured using the perpetual inventory method, with the depreciation rate set at 9.6% (Zhang et 

al., 2004). The land input is expressed as the forest area (Zhu et al., 2022). The output variables include the 

gross forestry products and FCS (Lin and Ge, 2019). 

 

IPCC (2006) provides two methods to account for FCS: the incremental loss method and the pooled difference 

method. Referring to most of the literature (Wang et al., 2022; Zhao et al., 2023), we use the incremental loss 

method to measure FCS in 30 Chinese provinces. The specific equations are shown in Eqs.3~5: 

 ∆𝐶𝐵𝑗
= ∆𝐶𝐺𝑗

− ∆𝐺𝐿𝑗
 (3) 

 ∆𝐶𝐺𝑗
= ∑ 𝐴𝑖𝑗 ∙ 𝑉𝑖𝑗 ∙ 𝐵𝐸𝐹𝐹𝑗

∙ 𝑆𝑉𝐷𝑖𝑗 ∙ 𝐶𝐹𝑖𝑗 ∙ 𝐺𝑅𝑖𝑗𝑖  (4) 

 ∆𝐶𝐿𝑗
= ∑ 𝐴𝑖𝑗 ∙ 𝑉𝑖𝑗 ∙ 𝐵𝐸𝐹𝐹𝑗

∙ 𝑆𝑉𝐷𝑖𝑗 ∙ 𝐶𝐹𝑖𝑗 ∙ 𝐶𝑅𝑖𝑗𝑖  (5) 

 

In the above equations, ∆𝐶𝐵𝑗
 represent the FCS in the 𝑗th province. ∆𝐶𝐺𝑗

 and ∆𝐺𝐿𝑗
 represents the forest carbon 

sequestration and forest carbon emission in the 𝑗th province. 𝐴𝑖𝑗 represent the area of tree species in the 𝑗th 

province. 𝑉𝑖𝑗 represent the wood accumulation of tree species in the 𝑗th province. 𝐵𝐸𝐹𝐹𝑗
 is the forest biomass 

expansion factor in the 𝑗th province. 𝑆𝑉𝐷𝑖𝑗 represent the stem bulk density of tree species in the 𝑗th province. 

𝐶𝐹𝑖𝑗 represent the carbon sequestration coefficient of the 𝑖th in the 𝑗th province , taken as 0.5 (Zhao et al., 

2023). 𝐺𝑅𝑖𝑗 and 𝐶𝑅𝑖𝑗 represents the annual growth rate and annual consumption rate of 𝑖th tree species in 

the 𝑗th province, respectively. 

 

We used the weighted average coefficients of tree species to calculate forest carbon sinks to avoid data 

discontinuity for tree species in each province (Zhao et al., 2023). The details are shown in Eqs. 6~8: 

 ∆𝐶𝐵𝑗
= 𝐴𝑗 ∙ 𝑉𝑗 ∙ 𝐵𝐸𝐹𝐹𝑗

̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑆𝑉𝐷𝑗
̅̅ ̅̅ ̅̅ ∙ 𝐶𝐹𝑗 ∙ (𝐺𝑅𝑗

̅̅ ̅̅ ̅ − 𝐶𝑅𝑗
̅̅ ̅̅ ̅) (6) 

 𝐵𝐸𝐹𝐹𝑗
̅̅ ̅̅ ̅̅ ̅̅ = ∑ (𝐵𝐸𝐹𝐹𝑖

∙
𝐴𝑖𝑗∙𝑉𝑖𝑗

𝐴𝑗∙𝑉𝑗
)𝑛

𝑖=1  (7) 

 𝑆𝑉𝐷𝑗
̅̅ ̅̅ ̅̅ = ∑ (𝑆𝑉𝐷𝑖 ∙

𝐴𝑖𝑗∙𝑉𝑖𝑗

𝐴𝑗∙𝑉𝑗
)𝑛

𝑖=1  (8) 

 

In the above equations, 𝐵𝐸𝐹𝐹𝑗
̅̅ ̅̅ ̅̅ ̅̅  represent the weighted average of forest biomass expansion factor in the 𝑗th 

province. 𝑆𝑉𝐷𝑗
̅̅ ̅̅ ̅̅  represent the weighted average of stem volume density of the 𝑖th tree species in the 𝑗th province. 

𝐺𝑅𝑗
̅̅ ̅̅ ̅ and 𝐶𝑅𝑗

̅̅ ̅̅ ̅ represents the annual forest growth and depletion rates in the 𝑗th province, respectively. The 

relevant parameters required to calculate the FCS are shown in Table 1. 
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Provinces GR CR 𝑆𝑉𝐷̅̅ ̅̅ ̅̅  𝐵𝐸𝐹̅̅ ̅̅ ̅̅  Provinces GR CR 𝑆𝑉𝐷̅̅ ̅̅ ̅̅  𝐵𝐸𝐹̅̅ ̅̅ ̅̅  

Beijing 6.39 4.31 0.484 1.771 Henan 11.68 6.86 0.488 1.740 

Tianjin 11.66 9.44 0.423 1.821 Hubei 8.29 4.94 0.459 1.848 

Hebei 7.83 4.89 0.478 1.782 Hunan 9.90 6.38 0.394 1.712 

Shanxi 5.32 2.21 0.484 1.839 Guangdong 8.24 7.18 0.474 1.915 

InnerMongo 2.68 0.88 0.505 1.690 Guangxi 8.94 5.90 0.430 1.819 

Liaoning 5.58 3.23 0.504 1.803 Hainan 5.01 4.07 0.488 1.813 

Jilin 3.67 1.91 0.505 1.784 Chongqing 7.38 2.93 0.431 1.736 

Heilongjiang 3.87 1.67 0.499 1.751 Sichuan 3.04 1.06 0.425 1.744 

Shanghai 9.62 6.71 0.392 1.874 Guizhou 8.45 3.70 0.425 1.842 

Jiangsu 13.19 10.16 0.395 1.603 Yunnan 4.12 2.25 0.501 1.870 

Zhejiang 9.35 4.46 0.406 1.755 Shaanxi 4.10 2.28 0.558 1.947 

Anhui 9.78 6.14 0.416 1.742 Gansu 3.54 1.89 0.462 1.789 

Fujian 6.68 5.63 0.436 1.806 Qinghai 2.40 1.27 0.408 1.827 

Jiangxi 8.28 5.35 0.422 1.795 Ningxia 7.39 3.30 0.444 1.798 

Shandong 15.28 9.51 0.412 1.774 Xinjiang 2.95 1.55 0.393 1.683 

Note: Data were taken from IPCC (2011) and Zhao et al (2023). 

Table 1: Calculation parameters of each province. 

 

4.3 Calculation of spatial association matrix 

A spatial association matrix needs to be constructed before using SNA to analyze the FCSE spatial association 

network structure in China. Granger causality test and spatial gravity model are the commonly used methods for 

matrix construction (Shen et al., 2021; Huo et al., 2022). However, the former lacks measurement accuracy, 

mainly because it cannot capture the temporal trend of network node correlation (Zeng et al., 2023). We 

complete constructing the spatial association matrix based on the spatial gravity model. The equation of the 

spatial gravity model is shown in Eq. 9: 

 𝑞𝑖𝑗 =

𝐹𝐶𝑆𝐸𝑖
𝐹𝐶𝑆𝐸𝑖+𝐹𝐶𝑆𝐸𝑗

∙ √𝐺𝐷𝑃𝑖∙𝐹𝐶𝑆𝐸𝑖∙𝑃𝑂𝑃𝑖
3 ∙ √𝐺𝐷𝑃𝑗∙𝐹𝐶𝑆𝐸𝑗∙𝑃𝑂𝑃𝑗

3

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗
2 (𝑃𝐺𝐷𝑃𝑖−𝑃𝐺𝐷𝑃𝑗)2⁄

;  𝑖 ≠ 𝑗 (9) 

 

In the above equation, 𝑞𝑖𝑗  represent the spatial gravitational strength of FCSE in the 𝑖th province and 𝑗th 

province. When 𝑖 = 𝑗, 𝑞𝑖𝑗  is taken as 0. 𝐺𝐷𝑃, 𝑃𝐺𝐷𝑃 and 𝑃𝑂𝑃 denotes GDP, per capita GDP and year-end 

resident population of each province, respectively. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗  represent the shortest distance between the 𝑖th 

province and the 𝑗th province. 

 

The gravitational intensity matrix (30×30) is constructed for 30 provinces in China based on the above 

calculation results. The row mean values of the gravitational intensity matrix are calculated. If an element in the 
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matrix is greater than the row means, the element is assigned a value of 1, and vice versa. The final obtained 

binary matrix is the spatial association matrix used in this paper. 

 

4.4 Social network analysis 

4.4.1 Overall network structure characteristics: The social network is a topological graph consisting of nodes 

and an association matrix. Density, connectedness, hierarchy, and efficiency are commonly used indicators to 

assess the structure of social networks (Chen et al., 2022; Wang et al., 2023). We calculated the above indicators 

to assess the overall structural characteristics of the spatial association network of FCSE in China. 

 

The network density reflects the tightness of the association of the nodes in the spatial association network of 

FCSE in China, and the higher the value, the higher the tightness of FCSE in each province. Its calculation 

method is shown in Eq. 10: 

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐿

𝑃∙(𝑃−1)
 (10) 

In the above equation, 𝐿 and 𝑃 represent the number of nodes and the number of provinces in the network, 

respectively. 

 

The network connectedness reflects the stability of the spatial association network of FCSE in China. When the 

network connectedness is 1, it indicates that the network structure is stable. Its calculation formula is shown in 

Eq. 11: 

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠 = 1 −
2∙𝑉

𝑃∙(𝑃−1)
 (11) 

In the above equation, 𝑉 represent the number of interconnected groups of nodes in the network. 

The network hierarchy reflects the asymmetric accessibility of the FCSE spatial association network. The higher 

the rank degree, the stronger the “leadership” role of the central node in the network and the more complex the 

network structure. Its calculation method is shown in Eq. 12: 

 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 = 1 −
𝜃

𝑀𝐴𝑋(𝜃)
 (12) 

In the above equation, 𝜃 represent the number of groups of symmetrically reachable nodes in the network. 

 

The network efficiency reflects the number of relationships in the network. It is calculated as shown in Eq. 13: 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 −
𝜏

𝑀𝐴𝑋(𝜏)
 (13) 

In the above equation, 𝜏 represent the number of redundant relational lines in the network. 

 

4.4.2 Individual network structure characteristics: We further calculated degree centrality, closeness centrality 

and betweenness centrality (Bai et al., 2020; Yu et al., 2022) to analyze the individual network structure 

characteristics of FCSE in China. 

 

Degree centrality reflects the degree of proximity of a node to the center of the network. The higher the degree 

centrality of a province, the stronger the “leadership” of the province in the FCSE spatial association network 

(Bai et al., 2020). The formula is shown in Eq. 14: 
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 𝐷𝑒𝑔𝑟𝑒𝑒 =

𝑛

𝑁−1
 (14) 

In the above equation, 𝑁 represent the number of individuals in the spatial association network of FCSE in 

China. 𝑛 represent the number of individuals directly associated with a point. 

The closeness centrality reflects whether a node in the network is vulnerable to control by other nodes. The 

higher the proximity centrality of a province, the better the province is not controlled by other nodes in the 

FCSE spatial association network. Its calculation formula is shown in Eq. 15: 

 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 = ∑ 𝑑𝑖𝑗
𝑛
𝑗=1  (15) 

In the above equation, 𝑑𝑖𝑗  represent the length of the shortcut from the 𝑖th province to 𝑗th province. 

The between centrality degrees reflects the ability of a node in the network to control the relationships among 

other nodes. The higher the intermediary centrality of a province, the stronger the province's role as a “bridge” 

in the FCSE spatial association network (Huang et al., 2019). The formula is shown in Eq. 16: 

 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 =
2∙∑ ∑ 𝑏𝑗,𝑘(𝑖)𝑛

𝑘=2
𝑛−1
𝑗=1

𝑁2−3𝑁+2
, 𝑖 ≠ 𝑗 ≠ 𝑘 & 𝑗 < 𝑘 (16) 

In the above equation, 𝑛 and 𝑁 represents the number of groups associated with a certain node and the target 

node and all nodes, respectively; 𝑏𝑗,𝑘(𝑖) represent the ability of the 𝑖th node to control the relationship between 

the 𝑗th and the 𝑘th node. 

 

4.4.3 Core and periphery analysis: In the FCSE spatial association network, the status and importance of each 

province are unequal. To clarify the status and importance of each province in the FCSE spatial association 

network, we use the built-in CORR algorithm of UCINET software to conduct core edge analysis of the 

network. The results of the core-periphery analysis are mainly reflected by the core degree. The higher the core 

degree of a province, the higher the status and importance of that province in the FCSE spatial association 

network in China. 

 

4.4.4 The block model: The block model is an important method to study the clustering characteristics of each 

node in a spatial association network, and the model can intuitively reflect the sent and received effects among 

plates of nodes in the network. We use the block model to analyze the clustering characteristics of the FCSE 

spatial association network. The specific steps are as follows:  

1. Construct the square matrix of the FCSE spatial association network in China. It is divided into four 

plates to ensure that each province can be included in each plate.  

2. Calculate the density matrix. Compare the elements of the matrix with the density of the network, and 

assign a value of 1 to the element if it is greater than the average density of the network and 0 to the 

opposite.  

3. Sketch the board relationship based on the pixel matrix and analyze the sent and received relationship 

between each plate. 

 
4.5 Quadratic assignment procedure (QAP) regression 

QAP regression is a common nonparametric method for studying relational data (Kim et al., 2019). Compared 

with parametric regression, QAP regression can resample, thus avoiding the problem of multicollinearity among 

relational data and making the parameter estimation results more robust (Su and Yu, 2019). We use QAP to 
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analyze the driving mechanism of the FCSE spatial association network in China, and the explanatory variable 

is the FCSE spatial association matrix (FSNM). Meanwhile, we refer to the studies of Du et al (2021), Wang et 

al (2022), Zhao et al (2023), and other scholars and also select geographic proximity (DIS), water resources 

differences matrix (WDM), forestry scale differences matrix (FDM), economic level differences matrix (EDM) 

and science and technology level differences matrix (TDM) initially as explanatory variables based on the 

characteristics of FCSE. 

 

Each explanatory variable is calculated as follows: 

(1) DIS, represented by the matrix of inter-provincial neighboring weights in China. If two provinces are 

geographically adjacent, the element in the matrix reflecting their location relationship is assigned a value of 1, 

and vice versa is 0. 

(2) WDM, using the absolute value of the difference in total water resources between provinces. 

(3) FDM, using the absolute value of the difference between the scale of forestry output value between 

provinces. 

(4) EMD, using the absolute value of the difference in per capita GDP between provinces. 

(5) TDM is characterized by the absolute value of the difference in the number of patents granted between 

provinces in China. The patent grant includes invention, utility model, and design patent grant. To avoid the 

influence of data magnitude on the estimation results, the above explanatory variables are standardized for 

extreme differences. The final constructed QAP model is shown in Eq. 17: 

 𝐹𝑆𝑁𝑀 = 𝑓(𝐷𝐼𝑆, 𝑊𝐷𝑀, 𝐹𝐷𝑀, 𝐸𝐷𝑀, 𝑇𝐷𝑀) (17) 

 

4.6 The panel data regression model 

To further clarify whether the network structure affects FCSE, we constructed a panel data regression model 

with degree centrality, closeness centrality, and betweenness centrality of each province in all years as 

explanatory variables (Wu et al., 2019; Ouyang and Xiong, 2023) and FCSE of each province in all years as 

explanatory variable to conduct analysis. To control for factors affecting FCSE other than the three centralities, 

we include total water resources, gross forestry output, per capita GDP, and patents granted in each province as 

control variables in the regression. The final panel regression models constructed are shown in Eqs. 18~20: 

 𝐹𝐶𝑆𝐸𝑖𝑡 = 𝛼 + 𝛽1 ∙ 𝐷𝑒𝑔𝑟𝑒𝑒𝑖𝑡 + ∑ 𝛽𝑘 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑘 + 𝑢𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡 (18) 

 𝐹𝐶𝑆𝐸𝑖𝑡 = 𝛼 + 𝛽2 ∙ 𝐶𝑙𝑜𝑠𝑠𝑛𝑒𝑠𝑠𝑖𝑡 + ∑ 𝛽𝑘 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑘 + 𝑢𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡 (19) 

 𝐹𝐶𝑆𝐸𝑖𝑡 = 𝛼 + 𝛽3 ∙ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑖𝑡 + ∑ 𝛽𝑘 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑘 + 𝑢𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡 (20) 

In the above equations, 𝑖 and 𝑡 represents province and time, respectively. 𝛼 represent the constant term. 𝑢𝑖, 𝑣𝑡 

and 𝜀𝑖𝑡 represents individual fixed effects, time fixed effects and random error terms, respectively. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑘  

and 𝛽𝑘 represents a series of control variables and their estimated coefficients. 𝛽1, 𝛽2, and 𝛽3 represents the 

estimated coefficients of degree centrality, closeness centrality, and between centrality, respectively, and their 

sign direction and significance reflect the influence of the spatial structure of the network on FCSE. 

 

4.7 Data sources 

The Chinese land use remote sensing monitoring data and Chinese administrative boundary data used in this 

paper were obtained from the Resource and Environmental Science and Data Center (https://www.resdc.cn). 
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Forest cover area, year-end number of forestry employees, forestry fixed asset investment and gross forestry 

product by province were obtained from the China Forestry Statistical Yearbook (https://www.data.cnki.net). 

Total population, per capita GDP and GDP by province are obtained from the China Statistical Yearbook 

(https://www.data.cnki.net). Total water resources by province are obtained from the China Water Resources 

Bulletin (https://www.mwr.gov.cn). The number of invention patents granted, utility model patents granted and 

design patents granted by each province are obtained from the Chinese Research Data Services Platform 

(https://www.cnrds.com). 

 

5. Results and Discussions 

5.1 Spatio-temporal characteristics of FCSE in China 

Figure 2 shows the spatial distribution of FCSE in China in 2005, 2010, 2015 and 2020. (1) In terms of temporal 

characteristics, the overall FCSE in China shows an upward trend from 2005 to 2020. The provinces with faster 

FCSE growth rates are mainly concentrated in eastern China, among which Tianjin, Beijing and Guangdong 

have the highest increases, reaching 452%, 384% and 229%, respectively. The provinces where FCSE declined 

were mainly in western and northeastern China, with the three fastest declining provinces being Jilin, Yunnan 

and Gansu, with declines of -68%, -52% and -51%, respectively. The main reason for the faster growth rate of 

FCSE in the eastern provinces is the rising level of forest management and the increased awareness of forest 

conservation. The rapid decline of FCSE in the western region may be attributed to the expansion of urban areas 

due to rapid urbanization (Xiao and He, 2023), which has crowded the forest area. The apparent decline in 

FCSE in the northeastern provinces can be attributed to the decline in forestry science and technology 

practitioners due to population loss (You et al., 2021). (2) In terms of spatial characteristics, China's FCSE 

shows a significant character of “high in the south and low in the north”. The three provinces with the highest 

mean values are Zhejiang, Shanghai, and Hainan, reaching 2.1014, 1.3765, and 1.2201, respectively. The three 

provinces with the lowest mean values are Gansu, Inner Mongolia, and Qinghai, whose mean FCSE values are 

0.0349, 0.1040, and 0.1102, respectively. The spatial distribution characteristics of FCSE in China are highly 

correlated with the distribution of forest resources and the economic level of each location (Wei and Shen, 

2022), which can be corroborated by the spatial distribution map of land use types in China (Figure 1). 

 

 

Figure 2: Spatial distribution of FCSE in China in 2005, 2010, 2015 and 2020. 
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5.2 Network structure characteristics of FCSE in China 

5.2.1 Overall network structure characteristics: We calculated the spatial gravity values of China's FCSE in 

2005, 2010, 2015, and 2020 based on Eq.9, constructed the spatial association matrix, and mapped the topology 

of the Chinese provincial FCSE spatial association network using ArcGIS software (Figure 3). It can be found 

that there are no isolated individuals in the spatial association network, and the FCSE of each province has 

broken through the traditional geospatial restrictions and formed cross-regional spatial association relationships. 

During the study period, the network relationships in the topology diagram showed a significant upward trend, 

specifically from 148 in 2005 to 170 in 2020. This indicates that the correlation of the network gradually 

increased during the study period, and the complex network characteristics became increasingly apparent. 

 

 

Figure 3: Topology diagram of FCSE spatial association network in China 

 

We use UCINET software to measure the overall characteristic of the FCSE spatial association network in 

China (Figure 4). According to figure 4 the following conclusions can be drawn:  

(1) Although the density of the spatial association network decreased in 2020, it maintained a fluctuating 

upward trend for the whole study period. The network density increases from 0.170 in 2005 to 0.195 in 2020 

indicates that the correlation of the FCSE spatial association network in China gradually increases, further 

confirming the previous statement. 

(2) The connectedness of the FCSE spatial association network is 1 in all periods, indicating that the FCSE of 

Chinese provinces are closely connected with each other. There is an obvious spatial spillover effect (Bai et al., 

2020), and the network is stable. 

(3) The hierarchy of the network shows a significant decline from 2005 to 2015, specifically from 0.761 in 2005 

to 0.479 in 2015, which indicates that the internal hierarchy of the FCSE in China tends to be loosened during 

this period, and the dependence of the overall network on a single or a few provinces decreases. The hierarchical 

structure of the network gradually returns to the pre-2010 state after 2015. 
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(4) The efficiency of the network gradually decreased from 0.769 in 2005 to 0.714 in 2020, further indicating 

that the internal stability of the network is gradually improving (Tang et al., 2022). 

 

 

Figure 4: Overall characteristics of the FCSE spatial association network in China. 

 

To sum up, after 2005, stimulated by technology diffusion and a series of forest sustainable development 

policies (NFGA, 2009; NDRC, 2017; 2018), China's forestry technology and forestry innovation capital have 

been distributed in a coordinated manner across the country, with increasingly significant reciprocal effects of 

carbon sink technologies and closer linkages between FCSE across provinces. However, the network nodes' 

connectivity shows that there are no free state points, but the number of connections varies greatly among 

provinces. Therefore, it is necessary to analyze the individual network structure characteristics further. 

 

5.2.2 Individual network structure characteristics 

The degree centrality, closeness centrality and betweenness centrality of the FCSE spatial association network 

were calculated using UCINET software (Figure 5). 

 

From the perspective of closeness centrality: 

(1) Shanghai has the highest degree centrality from 2005 to 2020, reaching 93.1, 93.1, 89.7 and 93.1, 

respectively, which is much higher than the 4-year average of all provinces (32.3). This indicates that Shanghai 

is at the absolute center of the spatial association network, playing the role of “leader” and guiding the overall 

evolution of the spatial association network. 

(2) In addition to Shanghai, provinces such as Beijing, Jiangsu, Zhejiang and Guangdong have similarly high 

degree centrality. The above-mentioned provinces (including Shanghai), mostly located in the eastern coastal 

region of China, have developed economies, convenient transportation, and high levels of forestry technology 

(Ma et al., 2023), and can attract critical elements such as forestry funding and scientific and technological 

talent from other provinces (Jiao et al., 2018). 

(3) Northeast, central and western provinces of China had lower degree centrality. On the one hand, the distance 

between the above regions and economically developed regions (northeast and west) is not conducive to 

realizing the cross-regional flow of critical factors to enhance FCSE. On the other hand, the attractiveness of the 
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above regions is limited by the development level of forestry science and technology and economic 

development. 

 

From the perspective of closeness centrality: 

(1) The four-year mean value of closeness centrality is 60.5, and the provinces above the mean include Beijing, 

Shanghai, Jiangsu, Zhejiang and Fujian, which are highly similar to degree centrality. These provinces are closer 

to other provinces in the network and have obvious advantages in element flow and information transfer, which 

can quickly create linkages and connections. 

(2) Provinces such as Guangxi, Jiangxi, Inner Mongolia, and Ningxia have a low degree of closeness centrality, 

indicating that these provinces are less controlled by other provinces in the network and play the role of 

“marginal actors”. The main reason is its relatively poor economic level, technology level, etc., and the lack of 

factor attractiveness. 

 

From the perspective of betweenness centrality: 

(1) Beijing, Shanghai, Jiangsu, Zhejiang and Guangdong and other eastern coastal areas’ betweenness centrality 

is always at a higher level. This indicates that the above provinces not only play the role of “leader” in the 

network but also the role of “bridge” to control the spread of FCSE in other provinces. The possible reason for 

this is that the advanced forest conservation concepts and forest operation models of the provinces mentioned 

above have influenced forestry operations in other provinces and the flow of factors between them. 

(2) Western and central provinces such as Shaanxi, Inner Mongolia and Anhui have lower betweenness 

centrality and a weak role as a “bridge” in the network, which is still constrained by the economic level and 

geographical location. 

 

 

Figure 5: Degree centrality, closeness centrality and betweenness centrality by province in 2005, 2010, 2015 

and 2020. 

 

2005 75.9 31.0 13.8 20.7 13.8 17.2 17.2 20.7 93.1 62.1 86.2 17.2 10.3 17.2 27.6 24.1 17.2 17.2 55.2 17.2 10.3 24.1 20.7 20.7 17.2 17.2 24.1 20.7 20.7 17.2 

2010 58.6 48.3 24.1 24.1 27.6 24.1 20.7 24.1 93.1 86.2 86.2 27.6 24.1 17.2 41.4 31.0 10.3 17.2 51.7 13.8 13.8 27.6 24.1 20.7 17.2 17.2 27.6 27.6 17.2 20.7 

2015 72.4 27.6 24.1 24.1 17.2 24.1 27.6 31.0 89.7 82.8 82.8 27.6 51.7 20.7 44.8 34.5 24.1 20.7 58.6 17.2 17.2 34.5 24.1 24.1 24.1 24.1 34.5 31.0 24.1 20.7 

2020 82.8 41.4 17.2 17.2 13.8 17.2 17.2 17.2 93.1 89.7 72.4 17.2 51.7 24.1 13.8 34.5 24.1 20.7 55.2 24.1 20.7 34.5 24.1 24.1 24.1 20.7 34.5 31.0 17.2 24.1 

2005 74.4 55.8 53.7 55.8 53.7 54.7 54.7 55.8 93.5 72.5 87.9 54.7 50.9 52.7 58.0 56.9 54.7 54.7 69.0 54.7 50.9 56.9 55.8 55.8 54.7 54.7 56.9 55.8 55.8 54.7 

2010 63.0 56.9 56.9 56.9 58.0 56.9 55.8 56.9 93.5 87.9 87.9 58.0 56.9 52.7 63.0 59.2 50.9 52.7 67.4 51.8 51.8 58.0 56.9 54.7 53.7 54.7 58.0 58.0 54.7 55.8 

2015 74.4 54.7 56.9 56.9 54.7 56.9 58.0 59.2 90.6 85.3 85.3 58.0 67.4 54.7 64.4 60.4 56.9 55.8 70.7 52.7 52.7 60.4 56.9 56.9 56.9 56.9 60.4 59.2 56.9 55.8 

2020 85.3 61.7 54.7 54.7 53.7 54.7 54.7 54.7 93.5 90.6 78.4 53.7 67.4 56.9 53.7 60.4 56.9 55.8 69.0 56.9 55.8 60.4 56.9 56.9 56.9 55.8 60.4 59.2 54.7 56.9 

2005 15.9 1.3 0.2 0.3 0.2 0.1 0.1 0.3 22.9 7.3 19.8 0.1
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 0.0 0.3 0.4 0.6 0.1 0.1 5.8 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.6 0.4 0.3 0.1 
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5.2.3 The core and periphery structure characteristics: By using the CORR module of UCINET, the core degrees 

of 30 Chinese provinces in 2005, 2010, 2015 and 2020 are further calculated. And the core degree of each 

province fluctuated between 0.1 and 0.4 in all years, with a maximum value of 0.354 and a minimum value of 

0.103. Based on the data characteristics, we divided the core degree into three equal intervals: [0.1, 0.2), [0.2, 

0.3) and [0.3, 0.4). The provinces whose core degrees fall in [0.3, 0.4) are defined as network core; the 

provinces whose core degrees fall in the interval [0.2, 0.3) are defined as network sub-core; and the other 

provinces are defined as network periphery. The core-periphery structure of the network in each phase is shown 

in figure 6, where the red nodes are the network core, the pink nodes are the network sub-core, and the gray 

nodes are the network edges. 

 

According to figure 6, the following conclusions can be obtained: 

(1) From the comparison between different provinces. The number of core and peripheral provinces in the 

network varies widely. Provinces such as Shanghai, Beijing, Jiangsu, and Zhejiang are closely connected with 

other provinces and are always in the core or sub-core position. Most provinces in the central, western, and 

northeastern regions are less able to establish network relationships with other provinces and are always on the 

periphery. 

(2) Regarding the temporal changes in the core-periphery relationship, the number of provinces that become 

core or sub-core in the network gradually increases and has obvious dynamic change characteristics. Shanghai, 

Jiangsu, Zhejiang, Beijing, and Guangdong are always in the core or sub-core status of the network. Henan, 

Shandong, and Tianjin entered the network sub-core in 2010, and Fujian and Anhui entered the network sub-

core in 2015. It is not difficult to find that these newly entered sub-core provinces are geographically adjacent or 

closer to the in-situ core or sub-core cities, and the dynamic changes of the network core edge structure may be 

more related to the geographical location. 

 

 

Figure 6: Core-periphery structure of network in 2005, 2010, 2015 and 2020. 
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5.2.4 Clustering structural characteristics of network 

We used the CONCOR module in UCINET software to segment the FCSE spatial association network in 2005, 

2010, 2015 and 2020. The depth was set to 2, the convergence to 0.2 (Bu et al., 2020), and finally divided into 

four plates. The spatial correlation of each plate is shown in Table 2. Figure 7 further shows the specific 

provinces included in each plate for four years. 

 

(1) Overall, the number of external relations of the plates in all years are more than the number of internal 

relations. The number of internal relations of the plates in 2005, 2010, 2015 and 2020 are 18, 31, 29 and 13, 

respectively, and the number of external relations is 130, 137, 158 and 157, respectively. By analyzing the 

provinces included in the plate, it can be found that the plate consisting of most of the central, western, and 

northeastern provinces is the main exporter of factors in all four years, while the plate consisting of most of the 

eastern provinces is the receiver of elements in 2005, 2010 and 2015. This is mainly due to the high wage level 

and better policy environment in the east region, which are more attractive for the crucial factors to improve the 

FCSE. 

 

(2) Regarding temporal trends, the element linkages among provinces are in a dynamic process of change. 

Shandong and Fujian were in the main outflow plate in 2005 and 2010, and both changed to the main inflow 

plate in 2015, implying that the factor attractiveness of the above two provinces has been increasing during this 

period, and their roles in the network have gradually changed from "exporters" to "receivers". However, from 

2015 to 2020, Shandong reverted to the main outflow plate, indicating that the province lacks a long-term 

mechanism to enhance the attractiveness of forestry factors. Guangdong and Fujian changed from the main 

inflow plate to the agent plate in 2020, and Chongqing changed from the main outflow plate to the agent plate in 

2020, which means that the "bridge" role of the above three provinces in the FCSE spatial association network 

strengthened gradually between 2015 and 2020. 

 

Year Plate Plate role Sent Received Proportion of internal relations 

   Inside Outside Inside Outside Expected (%) Actual (%) 

2005 Plate I Main inflow 2 8 2 27 3.45 20.00 

Plate II Main inflow 5 15 5 77 10.34 25.00 

Plate III Main outflow 6 33 6 7 24.14 15.38 

Plate IV Main outflow 5 74 5 19 51.72 6.33 

2010 Plate I Main inflow 2 10 2 26 3.45 16.67 

Plate II Main inflow 5 15 5 84 10.34 25.00 

Plate III Main outflow 14 63 14 13 37.93 18.18 

Plate IV Main outflow 10 49 10 14 37.93 16.95 

2015 Plate I Main inflow 4 12 4 32 6.90 25.00 

Plate II Main inflow 6 20 6 93 13.79 23.08 

Plate III Main outflow 6 47 6 5 24.14 11.32 

Plate IV Main outflow 11 79 11 28 44.83 12.22 
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2020 Plate I Main inflow 8 10 8 102 13.79 44.44 

Plate II Agent 1 23 1 27 6.90 4.17 

Plate III Main outflow 2 45 2 12 31.03 4.26 

Plate IV Main outflow 2 79 2 16 37.93 2.47 

Table 2: Spatial correlation of FCSE in different plates. 

 

 

Figure 7: Provinces of each plate in 2005, 2010, 2015 and 2020. 

 

To further analyze the spatial conduction paths between the plates, we calculated the density matrix and pixel 

matrix for the four plates in 2005, 2010, 2015 and 2020 using the CONCOR module in the UCINET software 

(Table 3). Based on the results of the pixel matrix, a sketch of the sending relationship between the plates for 

four years was obtained (Figure 8).  

(1) Figure 8a shows that in 2005, there is a close reciprocity relationship between plates I-III and II-IV, and the 

elements are closely exchanged. Meanwhile, the sending paths between plates I-IV and II-III are mainly 

reflected as IV→I and III→II. The sending relationship between plates I-II and III-IV is not apparent. 

(2) Figure 8b shows that in 2010 the sent relationship between plates I-IV disappeared, and the spillover 

relationship between other plates remains the same as in 2000.  

(3) Figure 8c shows that the plate sent path in 2015 remains the same as in 2005, but the sent path of plate I→III 

disappeared. 

(4) Figure 8d shows that in 2020, the sent paths between the plates are mainly reflected as III→I, IV→I, II→I 

and II↔IV. 

 

It is not difficult to find that the elemental sending relationship between plates II-IV is more solid. From the 

perspective of specific provinces, the provinces included in Plate II and IV are the provinces of the "Belt and 

Road" construction. The possible reason for the long-term and stable factor reciprocity between the segments 

mentioned above is that the construction of the Belt and Road has, to a certain extent, broken down the barriers 

to factor flows among the provinces along the route and the resulting knowledge spillover and innovation 
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clustering effects (Zhang and Yang., 2021; Liu and Li. 2019) has led to the formation of cross-provincial 

collaboration mechanisms for forestry technology and talents between the southeast coastal and central and 

western provinces in the region. The weakest spillover effect between plates III and IV is still limited by the 

economy, forestry technology level, etc. 

 

Plate Density matrix Pixel matrix 

 I II III IV I II III IV 

I 1.000 0.000 0.313 0.094 1 0 1 0 

II 0.000 0.417 0.000 0.234 0 1 0 1 

III 0.813 0.594 0.107 0.008 1 1 0 0 

IV 0.438 0.906 0.016 0.021 1 1 0 0 

I 1.000 0.000 0.333 0.083 1 0 1 0 

II 0.000 0.417 0.083 0.229 0 1 0 1 

III 0.958 0.813 0.106 0.007 1 1 0 0 

IV 0.125 0.938 0.007 0.076 0 1 0 0 

I 0.667 0.200 0.167 0.119 1 0 0 0 

II 0.000 0.300 0.000 0.286 0 1 0 1 

III 0.792 0.625 0.107 0.027 1 1 0 0 

IV 0.310 0.929 0.009 0.060 1 1 0 0 

I 0.400 0.000 0.140 0.050 1 0 0 0 

II 0.467 0.167 0.100 0.361 1 0 0 1 

III 0.900 0.000 0.022 0.000 1 0 0 0 

IV 0.833 0.750 0.017 0.015 1 1 0 0 

Table 3: Density and pixel matrix. 

 

Figure 8: Simplified diagram of the relationship between the plates for 2005, 2010, 2015 and 2020 

 

5.3 Formation mechanism of network 

According to the setting of Eq.17, we use the QAP regression to analyze the driving mechanism of the FCSE 

spatial association network in China (Table 4). The number of random permutations is set to 10,000. From 

Table 4, the Adj-R2 for each year was 0.318, 0.313, 0.303 and 0.303, respectively, and all of them passed the 1% 

significance test, which indicates that the influencing factors selected in this paper can well explain the changes 

in the FCSE spatial association network in China (Ji et al., 2023). The standardized estimated coefficients and 

significance levels of each influence factor matrix are different, indicating that the formation of the spatial 

association network of forest carbon sink efficiency in China is driven by a combination of factors. 
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(1) The standardized estimated coefficients for all four years of Dis were positive and significant at the 1% 

level. This suggests that the geospatial proximity of provinces is an important factor in forming the FCSE spatial 

association network. The mechanism of the spatial flow of elements such as forestry capital and forestry talents 

is more easily realized between neighboring provinces, and it also confirms the first law of geography. 

(2) The standardized estimated coefficients of WDM are negative and significant in 2005, 2010 and 2015. 

This indicates that the differences in total water resources among provinces are an important resistance to 

forming the spatial association network. On the one hand, abundant water resource is an important factor 

affecting vegetation growth (Liu et al., 2014; Rachel et al., 2018; Gogoi et al., 2022). On the other hand, it is 

also a key factor influencing the characteristics and management mode of the forestry industry. The technical 

characteristics required for forestry development in arid and water-rich areas are different, and the element 

structure differs greatly, so it is not conducive to realizing a cross-regional flow of elements. 

(3) The standardized estimated coefficients of FDM are significant only in 2010 and 2020, and both are 

negative. This suggests that expanding scale differences in forestry can impede the formation of spatial 

association networks. Forestry output value reflects the scale of forestry development. Generally, the demand 

for elements is high in provinces with larger forestry scales. In comparison, the demand for factors is low in 

provinces with lower forestry scales, thus limiting the flow of elements from provinces with higher forestry 

output values to provinces with lower output values. 

(4) The standardized estimated coefficients of EDM were positive for all four years and were significant at 

the 1% level. This suggests that the widening differences in economic levels are an important factor in 

accelerating the formation of the FCSE spatial association network. Provinces with higher levels of economic 

development have relatively better wage levels, policy environments, and relatively well-developed forest 

carbon sink markets and are, therefore, more attractive to forestry elements. Under this premise, elements from 

those economically weak provinces are more inclined to flow to economically developed provinces and more 

willing to transport forestry primary products to those economically developed provinces for processing (Huo et 

al., 2022), which will also increase the spatial correlation of FCSE in each province. 

(5) The standardized estimated coefficients of TDM were positive for all four years and significant at the 

1% level. This indicates that the widening difference in technology levels is an important factor in accelerating 

the formation of the FCSE spatial association network. Provinces with high technology levels have a stronger 

sense of innovation and are more attractive to forestry talent and other elements. 

 

The effect of the mean value of each influence factor on the FCSE spatial association network was further 

estimated using QAP regression, and the results are shown in Model V in Table 4. Regarding the magnitude of 

the average effect in absolute terms, differences in economic levels are the most important driving force of the 

FCSE spatial association network. Provinces with higher economic levels become network centers first by 

element inputs and then influence the development of FCSE in other provinces by exporting advanced forestry 

management mode and forestry operation concepts outward. The differences in technology level further amplify 

this spatial interaction. The differences in water resource and forestry scale and geographic distance limit the 

further development of these spatial interactions (Figure 9). 
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Variables Model I: 2005 Model II: 2010 Model III: 2015 Model IV: 2020 Model V: Mean 

 S-Coef P-

Value 

S-Coef P-

Value 

S-Coef P-

Value 

S-Coef P-

Value 

S-Coef P-

Value 

Dis 0.160 0.000*** 0.171 0.000*** 0.204 0.000*** 0.170 0.000*** 0.186 0.000*** 

WDM -0.089 0.001*** -0.092 0.004*** -0.091 0.005*** -0.002 0.480 -0.145 0.000*** 

FDM 0.005 0.429 -0.050 0.068* 0.003 0.465 -0.051 0.051* -0.414 0.000*** 

EDM 0.434 0.000*** 0.387 0.000*** 0.440 0.000*** 0.480 0.000*** 0.608 0.000*** 

TDM 0.242 0.000*** 0.267 0.000*** 0.190 0.000*** 0.170 0.000*** 0.260 0.000*** 

Adj-R2 0.318 0.000*** 0.313 0.000*** 0.303 0.000*** 0.303 0.000*** 0.325 0.000*** 

Note: “***”, “**” and “*” indicate significant at the 1%, 5% and 10% levels, respectively. 

Table 4: Results of QAP regression. 

 

 

Figure 9: Schematic diagram of the formation mechanism of the FCSE spatial association network in China 

 

5.4. Impact of network structure on the FCSE 

The formation mechanism of the FCSE spatial association network in China was analyzed by the QAP 

regression. How does the spatial association network structure affect FCSE? We construct a panel data 

regression model, as shown in Eqs.18~20, to answer this question. The Variance Inflation Factor (VIF) test was 

performed before constructing the model. The VIF values of the explanatory variables for each of the three 

equations did not exceed 5 means that there is no multicollinearity. The estimation results are shown in Table 5. 

(1) The estimated coefficient of degree centrality is 0.0077, which is significant at the 1% level. It indicates 

that every 1% increase in the degree centrality of a province causes the FCSE of that province to increase by 

0.77%. The possible reason is that provinces with higher degree centrality are mostly located at the center of the 

network and have established closer factor linkages with other provinces. The provinces above attract factor 

inflows and guide changes in the association network while promoting their own FCSE. 
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(2) The estimated coefficient of the closeness centrality is 0.0219, which is significant at the 1% level. It 

indicates that every 1% increase in the closeness centrality of a province will increase the FCSE of that province 

by 2.19%. The main reason is that there is a significant positive spatial spillover effect of FCSE (Zhao et al., 

2023). The higher the closeness centrality, the higher the connectedness between provinces and other provinces, 

and the easier it is to undertake the spatial spillover effects from other regions, thus enhancing its own FCSE. 

(3) The estimated betweenness centrality is 0.0406, which is significant at the 1% level. It indicates that a 

1% increase in the betweenness centrality of a province would increase the FCSE of that province by 4.06%. 

The more betweenness centrality is, the more the province can play a “bridging” role in the network and 

therefore contribute to a certain extent to the improvement of its own FCSE by using the elements it “transmits”. 

 

 Model VI Model VII Model VIII 

Degree 0.0077*** 

(0.0026) 

  

Closeness  0.0219*** 

(0.0054) 

 

Betweenness   0.0406*** 

(0.0114) 

Control YES YES YES 

Province FE YES YES YES 

Year FE YES YES YES 

R2 0.1989 0.2534 0.2523 

Obs 120 120 120 

Note: “***”, “**” and “*” indicate significant at the 1%, 5% and 10% levels, respectively. The values in “( )” 

are robust standard error. 

Table 5: The impact of network structure on FCSE. 

 

6. Conclusions and Policy Implications 

By using the Super-SBM-DEA model and SNA the spatio-temporal characteristics of FCSE in province level 

and the FCSE spatial association network and clustering characteristics among provinces in China in 2005, 

2010, 2015 and 2020 are studied. And based on this, the QAP model is constructed to futher explore the 

formation mechanism of the FCSE spatial association network among provinces and also the influence of 

network structural characteristics on FCSE are analyzed by panel data regression. The main findings are as 

follows: 

(1) During the study period, the FCSE in China have showed an overall trend that a more significant 

increases in the eastern provinces and decreases in some provinces in the northeastern, central, and western 

regions. The FCSE in southern provinces are significantly higher than that in the northern areas, and its spatial 

distribution characteristics are highly correlated with the forest cover of each province. 

(2) Regarding network characteristics, the FCSE spatial association network in China has gradually 

increased in relevance and internal stability. The dependence of the overall network on a single or a few 

provinces has shown a decreasing and then increasing trend. Eastern provinces such as Shanghai, Jiangsu, and 
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Zhejiang have significantly higher point centrality, association centrality, and intermediary centrality than other 

provinces and play the role of both "leader" and "bridge" in the network. Shanghai has always been the 

network's core. At the same time, most of the central, western, and northeastern provinces are weak in 

establishing network relationships with other provinces and remain in a marginal position. 

(3) From the analysis results of the block model, the element linkages among provinces are always in the 

process of dynamic changes. Still, most of the time, most of the central, western, and northeastern provinces are 

mainly the senders of factors, and most of the eastern provinces are mainly the receivers of factors. 

(4) The results of the QAP model explicate the formation of the FCSE spatial association network in China 

results from the sight of a combination of factors, among them the differences in economic level is the most 

central factor driving the formation of the spatial association network. And the differences in technology level 

also accelerate the formation of the spatial association network. Besides the geographical distance, differences 

in water resources and forestry scale hinder the formation of the spatial association network. 

(5) From the results of the panel data regression, an increase in degree centrality, closeness centrality, and 

betweenness centrality of a province all raise the level of FCSE in that province. 

The above findings may provide some insights into the development of FCSE enhancement policies in 

China: 

(1) Forestry management departments should develop differentiated FCSE enhancement strategies by 

considering the distribution characteristics of China's forest resources and FCSE. The southern provinces of 

China are rich in forest resources and have high FCSE, so they can continue to maintain the current forestry 

management strategy and forestry support. The northern provinces of China have relatively scarce in forest 

resources and low FCSE and should increase afforestation efforts and control urban sprawl. In particular, 

Heilongjiang and Liaoning provinces are relatively rich in forest resources. However, their FCSE are lower than 

the national average, thus the key to improving FCSE in these provinces is to develop forestry technology, train 

forestry talents, and financial support for forestry technology can provide for enhancing. 

(2) Constructing a more scientific cross-regional synergistic enhancement mechanism for FCSE. The 

results of SNA show that the spatial correlation of FCSE in China has broken through the limits of geographical 

adjacency, and there are obvious complex network characteristics. Forestry technology exchange workshops 

between core and peripheral provinces should be carried out in due course to bring into play the driving effect of 

key core provinces on the overall FCSE in China and narrow the network distance between peripheral and core 

provinces. 

(3) The government should also focus on improving the income level and policy environment of relative 

less economical developed regions. The block model results have showed that the relative less economical 

developed regions, such as the central, western, and northeastern provinces, are mostly located in the net 

spillover block. Thus, improving the income level and policy environment can prevent further outflows of key 

forestry elements from these provinces. 

(4) In addition, the government needs to enhance the spatial association of FCSE in China. The results of 

panel data regression show that forming the spatial association network improves FCSE. Appropriate measures 

should be taken to balance the differences in water resources and forestry industry structure among regions. 

Due to data limitations, Hong Kong, Macau, Taiwan, and Tibet are excluded from the study sample. Future 

studies will improve this situation as statistical techniques improve and data availability increases. Besides, we 
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did not conduct a study on the spatial association network of China FCSE at a smaller scale (prefecture-level 

cities) due to the limitation of the CONCOR module on the sample size, and a new method may considered to 

develop to replace the CONCOR module in the future. Also, predicting the future structure of the FCSE spatial 

association network in China is also an expandable direction for this study. 
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